A \qquad is an angle whose vertex is the center of a circle.

An \qquad is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arc	Measure	Diagram
A \qquad is an arc whose points are on or in the interior of a central angle. Must be named by \qquad points.	The measure of a minor arc is equal to the measure of its \qquad \qquad .	
A \qquad is an arc whose points are on or in the exterior of a central angle. Must be named by \qquad points.	The measure of a major arc is equal to \qquad minus the measure of its \qquad	
If the endpoints of an arc lie on a diameter, the arc is a	The measure of a semicircle is equal to \qquad .	
\qquad are arcs of the same circle that intersect at exactly one point. \qquad and \qquad are adjacent arcs.		

\qquad are two arcs that have the same measure. In the figure, \qquad \cong \qquad

Arc Addition Postulate: The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.
\qquad are two arcs that have the same measure.

Theorem 11-2-2: In a circle, or congruent circles...

1. central angles \qquad \rightarrow chords \qquad
2. chords \qquad \rightarrow arcs \qquad
3. arcs \qquad \rightarrow central angles \qquad

Theorem 11-2-3: In a circle, if a radius (or diameter) is \qquad to a chord, then it bisects the chord and its arc.
\qquad or a chord is a radius (or diameter).

Examples:

1. Find each measure
a. Measure of arc JKL
b. measure of arc LJN

2. $\overline{T V} \cong \overline{W S}$. Find measure of arc WS.

3. Circle $\mathrm{C} \cong$ circle J and $\mathrm{m} \angle \mathrm{GCD} \cong \mathrm{m} \angle \mathrm{NJM}$. Find NM .

4. Ray PT bisects $\angle \mathrm{RPS}$. Find RT.

5. Find NP.

