

| Vertex <b>ON</b> the circle | The measure of the angle is <u>half</u> the measure of the <u>intercepted arc</u> .             | A C                                        | m LABC = \frac{1}{2} (mAB)                                                                                                                                                                                                                                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertex INSIDE the circle    | The measure of the angle ishalf theSum of the measures of the twointercepted arcs               |                                            | m $\angle AEB = \frac{1}{2} (m \overrightarrow{AB} + m \overrightarrow{CD})$<br>m $\angle CED = \frac{1}{2} (m \overrightarrow{AB} + m \overrightarrow{CD})$<br>m $\angle CEA = \frac{1}{2} (m \overrightarrow{AC} + \overrightarrow{BD})$<br>m $\angle BED = \frac{1}{2} (m \overrightarrow{AC} + \overrightarrow{BD})$ |
| Vertex OUTSIDE the circle   | The measure of the angle ishalf_ the _difference_ of the measures of the two _intercepted arcs. | $C = \begin{bmatrix} B \\ 1 \end{bmatrix}$ | angle = $\frac{1}{2}$ (outside-inside)<br>$m\angle ACD = \frac{1}{2}$ ( $m\widehat{AD} - m\widehat{BD}$ )                                                                                                                                                                                                                |
|                             |                                                                                                 | F 2 G                                      | MLEFG = 1 (MEHG - MEG)                                                                                                                                                                                                                                                                                                   |
|                             |                                                                                                 | L M N                                      | $m \angle JLN = \frac{1}{2} (mJN - mkM)$                                                                                                                                                                                                                                                                                 |

## Examples:

Find m∠EFH and measure of arc GF



m LEFH = 
$$\frac{1}{2}$$
 (m FH)  
=  $\frac{1}{2}$  (130)  
= 65°  
m LFG? =  $\frac{1}{2}$  (m GF)  
 $\frac{1}{6}$  =  $\frac{1}{2}$  (m GF)

2. m∠AEB



m LAEB = 
$$\frac{1}{2}$$
 (mAB + mBC)  
=  $\frac{1}{2}$  (139 + 113)  
=  $\frac{1}{2}$  (252)  
= 126°

3. Find the value of x.

a



m 
$$\angle CEG = \frac{1}{2} (m\widehat{CG} - m\widehat{DF})$$
  
=  $\frac{1}{2} (87 - 7)$   
=  $\frac{1}{2} (80)$   
=  $\frac{1}{2} (80)$ 

b.



$$m\angle ACD = \frac{1}{2}(m\widehat{D}A - m\widehat{B}D)$$

$$= \frac{1}{2}(200-74)$$

$$= \frac{1}{2}(126)$$

$$= 63^{\circ}$$

4. Find measure of arc YZ.

MLYVX= = (m WZ+mYI)

$$67 = \frac{1}{2} (68 + m \hat{y})$$

$$M \angle IXY = \frac{1}{2} (m \hat{Yz} - m \hat{IY})$$
  
 $49 = \frac{1}{2} (m \hat{Yz} - 66)$