Vocabulary:

The \qquad of a pyramid is the point opposite the base of the pyramid. The base of a \qquad pyramid is a regular polygon, and the lateral faces are congruent isosceles triangles.
 The \qquad of a regular pyramid is the distance from the vertex to the midpoint of an edge of the base.

The \qquad of a pyramid is the perpendicular segment from the vertex to the plane of the base.

The \qquad of a cone is the point opposite the base.

The \qquad of a cone is the segment with endpoints at the vertex and the center of the base. The axis of a \qquad cone
 is perpendicular to the base. The axis of an \qquad cone is not perpendicular to the base. The
\qquad of a right cone is the distance from the vertex of a right cone to a point on the edge of the base.

The \qquad of a cone is a perpendicular segment from the vertex of the cone to the plane of the base.

Formulas	
Lateral Area	LA (pyramid) $=$
	LA (cone $=$
Surface Area	SA $($ pyramid $)=$
	SA (cone $)=$

Examples:

1) Find the lateral area and surface area of a regular square pyramid with base edge length 14 cm and slant height 25 cm .

2) Find the lateral area and surface area of the regular pyramid.

10 in.
3) Find the lateral area and surface area of a right cone with radius 9 cm and slant height 5 cm .
4) Find the lateral area and surface area of the right cone.

5) The base edge length and slant height of the regular hexagonal pyramid are both divided by 5 . Describe the effect on the surface area.

