Writing Equations of Parallel and Perpendicular Lines

Lesson Objective

Using Slope-Intercept Form

Step 1: Find the slope (m) of the parallel (or perpendicular) line

Step 2: Find the y-intercept (b) by using (m) from Step 1, and the given point (x, y)

Step 3: Write the equation of the line using the slope (m) and y-intercept (b) from Steps 1 and 2.

Examples:

1. Write an equation of the line passing through point (-1, 1) that is <u>parallel</u> to the line y = 2x - 3.

①
$$m = 2$$

② $1 = 2(-1) + b$
 $1 = -2 + b$
 $+2 + 2$
 $3 = b$

(3)
$$y = 2x + 3$$

2. Write an equation of the line passing through (2, 3) that is perpendicular to the line $2x + y = 2 \rightarrow y = -2x + 2$

①
$$\bot$$
 to $m=-2$

$$m=\frac{1}{2}$$

②
$$3 = \frac{1}{2}(a) + b$$

 $3 = \frac{1}{2} + 6$
 $\frac{-1}{2} = \frac{1}{2}$

$$3y = \frac{1}{2}x + 2$$

ng Point-Slope Form

- Step 1: Find the slope (m) of the parallel (or perpendicular) line
- Step 2: Plug in the slope (m) from above and the given point (x, y) to the point-slope form equation of a
- Step 3: Solve for y to get the equation into slope-intercept form.

Examples:

3. Write an equation of the line that passes through the point (1, 5) and is <u>parallel</u> to the line y = 3x - 5

(a)
$$y-5=3(x-1)$$

②
$$y-5=3(x-1)$$
③ $y-5=3x-3+5$
 $y=3x+2$

4. Write an equation of the line passing through the point (-6, -6) that is perpendicular to line $y = -\frac{2}{3}x - 10$

①
$$1 + 0 = -\frac{2}{3}$$
 $m = \frac{3}{2}$

(a)
$$y-(-6)=\frac{3}{3}(x-(-6))$$

3
$$y+6=\frac{3}{2}x+9$$

 $\frac{-6}{2}x+9$
 $y=\frac{3}{2}x+3$

How do you know that the line x = 4 and y = 2 are perpendicular?

