Name			

1		
DOIN	5	
1		

CHAPTER 1 FINAL REVIEW SHEET

~			
Section	1	1	
Section		• 1	ź

		#		
The undefined terms are:		and	•	a a
Vocab Term	Definition		Diagram	
Point				Mail.
Line	2			
Plane			_	
Segment			68.00	<u>Inc.</u>
Endpoint			10000	
Ray				10 V
Opposite Rays		40	**	
Collinear (definition):				10
Coplanar (definition):				
Postulate, otherwise known as	(definition):		*	
Postulate 1-1-1: Throughtwo _	there	is exactly one		
Postulate 1-1-2: Through three them.			pla	ne containing
1-1-3: If points lie in a	, then the line contain	ning those points lies in		<u> </u>
1-1-4: If two intersect, the	n they intersect in exactly			
1-1-5: If two intersect, t				
Section 1.2:	ži.			
How to find the distance between two po	ints on a number line:		3.63	
Congruent segments:				
Segment Addition Postulate (Use the line	seg at right to write an equat	tion):		_ M
Midpoint: (det)	1000 GT 100 P	22.3	•	
Bisect (def):				
Section 1.3:				
~ · · · · · · · · · · · · · · · · · · ·				

Angle:(def)

Vertex: (def)

Acute Angle: (def)

Right Angle: (def)

Obtuse Angle: (def)

Straight Angle: (def)

Congruent Angles: (def)

Angle Addition Postulate (use the diagram at right to write an equation):

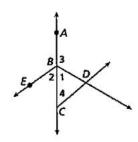
Section 1.4:

Adjacent Angles: (deP)

Linear Pair: (def)

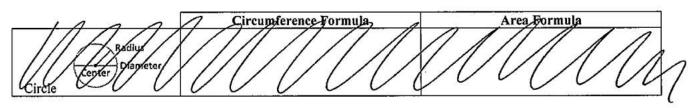
Complementary Angles: (def)

Supplementary Angles: (def)


Use diagram at right to list an example of the following (m $\angle EBD = 90^{\circ}$):

Adjacent Angles:

Linear Pair:

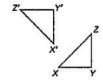

Complementary Angles:

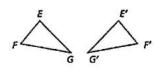
Supplementary Angles:

Section 1.5:

Shape	Perimeter Formula	Area Formula
["] w		
Rectangle £		
†, † ^s		
Square	V 102	
s h		
Triangle b		

Section 1.6:


Midpoint Formula:


Distance Formula:

Pythagorean Theorem:

Section 1.7: Name the following transformations (reflection, rotation, or translation)

Name				

points ___

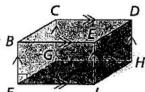
CHAPTER 2 FINAL REVIEW SHEET

Section 2.1:
Inductive Reasoning:
Conjecture:
Deductive Reasoning:
Counterexample:
Section 2.2:
Conditional statement:
Hypothesis (of conditional statement):
Conclusion (of conditional statement):
Negation (of a given statement, also provide the symbol used):
Fill in the table using the "p" and "q" statements:
Conditional
Converse
Inverse
Contrapositive
The conditional and are logically equivalent (they have the same truth value)
The converse and are logically equivalent (they have the same truth value)
Section 2.3:
Law of Syllogism:
Determine if the conjecture is valid by the Law of Syllogism. Given: If an animal is a mammal, then it has hair. If an animal is a dog, then it is a mammal. Conjecture: If an animal is a dog, then it has hair.

Law of Detachment:

Given: If you are tardy 3 times, you must go to detention.

Shea is in detention.


Conjecture: Shea was tardy at least 3 times.

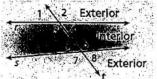
Section 2.4:							
Biconditional Statement:							
What needs to be true to	o form a biconditional st	atement?					
Write the converse of the	he statement and write th	e biconditi	onal:				
"If point	ts lie on the same line, th	en they are	collinear."				
Converse:							
Biconditional:							
Section 2.5:							
Addition Prop. =			Distributive Prop. =				
Subtraction Prop. =			Reflexive Prop. =		la:		
Multiplication Prop. =			Symmetric Prop. =				
Division Prop. =			Transitive Prop. =		127		
Reflexive Prop. ≅		£		u.			
Symmetric Prop. ≅							
Transitive Prop. ≅							
Section 2.6:							
Theorem:							
Congruent Supplement	Congruent Supplements Theorem:						
Right Angle Congruence	ce Theorem:						
Congruent Complemen	its Theorem:						

CHAPTER 3 REVIEW SHEET

Section 1:

Use the diagram to find the following:

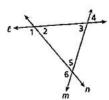
Pair of Parallel Lines:


Pair of Perpendicular Lines:

H Pair of Skew Lines:

Pair of Parallel Planes:

Use the diagram to find the following:



Pair of Corresponding Angles:

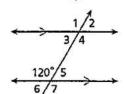
Pair of Alternate Interior Angles:

Exterior Pair of Same-Side Interior Angles:

Pair of Alternate Exterior Angles:

Identify the transversal and classify the angle pair ∠2 and ∠5 in the diagram above.

Section 2:


If lines are parallel, then corresponding angles are _____.

If lines are parallel, then alternate interior angles are .

If lines are parallel, then alternate exterior angles are _____.

If lines are parallel, then same-side interior angles are

Find each angle measure:

14. m∠2

15. m∠3

17. m∠5

18. m∠6

Section 3:

If corresponding angles are _____, then lines are _____.

If alternate interior angles are _____, then lines are _____.

If alternate exterior angles are _____, then lines are

If same-side interior angles are ______, then lines are _____

If there is a point not on a line, how many lines through that point a	re parallel to the line?		129
Section 4:			
The shortest distance from a point to a line is:			
If 2 angles form a linear pair and both angles are congruent, then:			
Diagram:	類		
If a transversal is 1 to one of 2 parallel lines, then:			
Diagram:			
If 2 coplanar lines are ⊥ to the same line, then:			
Diagram:			
Section 5:			
Slope (definition):			
Slope formula:			
If two lines are parallel, then their slopes are:			
If two lines are perpendicular, then their slopes are:			
Draw examples of lines with the following slope characteristics:			
Positive: Negative:	Zero:	Undefined:	
Circle the following equation whose graph is vertical : $y = 4$	x = 3		
Circle the following equation whose graph is horizontal: $y = 4$	x = 3		
Section 6:			
Point-Slope Form:			
Slope-Intercept Form:			:
Standard Form:			:
If two lines are parallel, then their slopes are	and the y-intercep	ts are	;
If two lines intersect, then their slopes are	- •		
If two lines coincide, then their slopes are	and the y-intercepts	are	

Name			

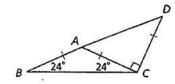
CHAPTER 4 REVIEW SHEET

ction 1:

Acute Triangle:

Equilateral triangle:

Equiangular triangle:

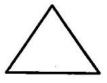

Isosceles Triangle:

Right triangle:

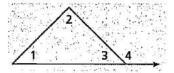
Scalene Triangle:

Obtuse triangle:

Classify each triangle by its angles and sides. 30. △ABC


Section 2:

The angles in a triangle add to:


Auxiliary line (draw an example):

Draw and label ONE example of an exterior angle of the triangle at right:

Draw and label the remote interior angles to the exterior angle in the same triangle at right:

Exterior Angle Theorem (use the triangle below to write an equation using the numbered angles):

Third Angles Theorem:

Section 3:

Describe corresponding angles of congruent polygons:

Describe corresponding sides of congruent polygons:

Polygons are congruent if and only if:

If $\triangle RST \cong \triangle XYZ$, identify all pairs of congruent corresponding parts.

Section 4 and 5:

What is an included angle?:

What is an included side?:

Name of ∆ ≅ shortcut	Diagram and Description	Name of $\Delta \cong$ shortcut	Diagram and Description
SSS≅	\triangle	ASA ≅	
SAS≅	\triangle	HL≅	
AAS≅	\triangle	Practice Proof:	. Given: \overline{JR} bisects $\angle MJN$. $\overline{MJ} \cong \overline{NJ}$ Prove: $\triangle MJK \cong \triangle NJK$

Statements

Section 6:

What does CPCTC stand for?:

To use CPCTC in a proof, we must first prove that:

Section 7:

What are the 4 strategies for placing a figure in the coordinate plane?

1.

3.

2.

4.

Section 4.8:

Identify the base angles and legs of the isosceles triangle at right:

Reasons

If
$$\Delta \rightarrow$$

If a triangle is equilateral → the triangle is ______.

If a triangle is equiangular → the triangle is ______