Name	

CHAPTER 4 REVIEW SHEET

ction 1:

Acute Triangle:

Equilateral triangle:

Equiangular triangle:

Isosceles Triangle:

Right triangle:

Scalene Triangle:

Obtuse triangle:

Classify each triangle by its angles and sides. **30**. △*ABC*

∆ACD

Section 2:

The angles in a triangle add to:

Auxiliary line (draw an example):

Draw and label ONE example of an exterior angle of the triangle at right:

Exterior Angle Theorem (use the triangle below to write an equation using the numbered angles):

Third Angles Theorem:

Section 3:

Describe corresponding angles of congruent polygons:

Describe corresponding sides of congruent polygons:

Polygons are congruent if and only if:

If $\triangle RST \cong \triangle XYZ$, identify all pairs of congruent corresponding parts.

Section 4 and 5:

What is an included angle?:

What is an included side?:

Name of ∆ ≅ shortcut	Diagram and Description	Name of $\Delta \cong$ shortcut	Diagram and Description
SSS≅		ASA ≅	
SAS ≅		HL ≅	
AAS≅		Practice Proof:	Given: \overline{JK} bisects $\angle MJN$. $\overline{MJ} \cong \overline{NJ}$ Prove: $\triangle MJK \cong \triangle NJK$

Statements

Section 6:

What does CPCTC stand for?:

To use CPCTC in a proof, we must first prove that:

Section 7:

What are the 4 strategies for placing a figure in the coordinate plane?

1.

2.

4.

Section 4.8:

Identify the base angles and legs of the isosceles triangle at right:

If a triangle is equilateral → the triangle is _____.

If a triangle is equiangular → the triangle is _____

Reasons