Name				

CHAPTER 12 FINAL REVIEW SHEET

Section 1:									
Isometry (def):									
Isometries are also called or									
A reflection is a transformati	on across a line, called the of each	segment joining e	ach point an	, so that it is the d its image.					
	Rules for reflections across the lines								
x-axis	y-axis			y = -x					
$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$	$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$	$(x, y) \rightarrow ($	_,)	$(x, y) \rightarrow (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$					
Section 2:									
A translation is a transformation along a such that each segment joining a point and its image has the as the vector and is to the vector									
Vectors have horizontal components (h) and vertical components (k).									
Rule for translations along vector $\langle h, k \rangle$: $(x, y) \rightarrow (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$									
Section 3:									
A rotation is a transformation about a point P, called the, such that each point and its image are the from P, and such that all angles with vertex P formed by a point and its image are									
Which is the default direction for rotations? In other words, unless otherwise stated, the direction of the rotation is always									
Rules for rotations about the origin									
90°	1	80°		270°					
$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}}$	$\underline{\hspace{1cm}}) \hspace{1cm} (x,y) \rightarrow (\underline{\hspace{1cm}}$)	(x, y	y) → (,)					
A 90° rotation clockwise is the same as a° rotation counterclockwise.									
A 180° rotation clockwise is the same as a° rotation counterclockwise.									
A 270° rotation clockwise is the same as a° rotation counterclockwise.									

Section 4:

Composition of transformations:

Glide reflection (def):

Theorem: The composition of two reflections in two parallel lines is e	equivalent to a
Theorem: The composition of two reflections in intersecting lines is e	
→ The angle of rotation is that of the angle → The center of rotation is the of	of formed by the lines. The two lines
Section 5 (only some of itnot all):	
Symmetry (def):	
Line symmetry (def):	
Rotational symmetry (def):	
The angle of rotational symmetry is the mapped onto itself.	angle which a figure can be rotated to be
Section 7:	
Dilation (def):	
The image and preimage after a dilation are said to be	
A dilation is also called a	•
The scale factor, k, is the ratio of the lengths of the	to the length of its corresponding
Rule for dilations (under scale factor, k): $(x, y) \rightarrow (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$	
A negative value for k also represents a by	<u> </u>