Chapter Test

Form B Circle the best answer.

Use the figure for Exercises 1 and 2.

- 1. Classify \overline{EH} and \overline{DH} .
 - A skew segments
 - B parallel segments
 - C perpendicular segments
 - D parallel planes
- 2. How many segments are skew to \overline{AE} ?
 - F 1
- G 2
- .14

Use the figure for Exercises 3 and 4.

- 3. Which are alternate exterior angles?
 - A $\angle 1$ and $\angle 3$
- C $\angle 3$ and $\angle 6$
- B $\angle 1$ and $\angle 8$
- D \angle 6 and \angle 7
- 4. Which statement is true?
 - F $\angle 1$ and $\angle 2$ are alternate interior angles.
 - G \angle 1 and \angle 3 are corresponding angles.
 - H ∠3 and ∠6 are alternate exterior angles.
 - J \angle 3 and \angle 7 are same-side interior angles.
- 5. Which correctly completes the sentence? If two parallel lines are cut by a transversal, then the two pairs of same-side interior angles are _____.
 - A supplementary
 - B complementary
 - C corresponding
 - D congruent

6. What type of angle is $\angle 1$?

- F acute
- H obtuse
- G right
- J straight
- 7. Given $\overrightarrow{RS} || \overrightarrow{QP}$, what is the value of x?

- A 6
- C 72
- B 9
- D 108

Use the figure for Exercises 8 and 9.

8. Which information proves that $r \parallel s$?

$$F \angle 1 \cong \angle 3$$

$$G \angle 4 \cong \angle 5$$

- 9. If $m \angle 3 = (4x + 20)^{\circ}$ and $m \angle 5 = (6x + 10)^{\circ}$, what value of x proves that $r \parallel s$?
 - A 5
- C 40
- B 15
- D 100
- 10. If a transversal is perpendicular to one of two parallel lines, how many different angle measures are formed?
 - F 1
- H 4
- G 3
- J 8

CHAPTER 3

Chapter Test

Form B continued

11. Which is a possible value of x?

- A -2
- C 3
- B 1
- D 4
- 12. Given: $\overrightarrow{AB} \parallel \overrightarrow{CD}$. E is on \overrightarrow{AB} , and F is on CD. EF is the perpendicular bisector of CD. What is the shortest segment from E to \overrightarrow{CD} ?
 - $F \overline{AF}$
- $H \overline{EF}$
- $G \overline{FC}$
- $J \overline{FC}$
- 13. Which justifies Step 3?

Given: $s \perp q$ and $\angle 1 \cong \angle 2$.

Prove: $s \perp p$

Proof:

Statements	Reasons
1. \angle 1 \cong \angle 2, $s \perp q$	1. Given
2. p q	2?
3. s ⊥ p	3?

- A ⊥ Transv. Thm.
- B p || r
- C Conv. of Alt. Int. /s Thm.
- D 2 lines \perp to same line \rightarrow 2 lines ||
- 14. Which describes the slope of a horizontal line?
 - F positive
- H zero
- G negative
- J undefined

- 15. What is the slope of the line through (-1, 4) and (5, 2)?

- 16. Given points A(1, 5), B(-2, -1), C(1, 1), and D(3, 5), what type of lines are \overrightarrow{AB} and CD?
 - F parallel
- H horizontal
- G perpendicular J vertical
- 17. Which is the equation of the line through (1, 11) and (-2, 2)?

A
$$y = 3x - 8$$

A
$$y = 3x - 8$$
 C $y = \frac{1}{3}x + 8$

B
$$3x + y = 8$$
 D $-3x + y = 8$

18. Which is the equation of the line shown in the graph?

F
$$y = -\frac{1}{2}x$$
 H $y = -\frac{1}{2}x + 5$

G $y = -2x + \frac{5}{2}$ J $y = -\frac{1}{2}x + \frac{5}{2}$

$$J y = -\frac{1}{2}x + \frac{5}{2}$$

19. Which line is parallel to $y = \frac{1}{2}x + 5$?

A
$$y = \frac{1}{2}x - 7$$
 C $y = x + 10$

C
$$y = x + 10$$

- B y = -2x + 5
- D y = 2x + 10
- 20. Which line coincides with y = 4x + 2?

 - F v = 4x 2 H v = -4x + 2

 - G 4y = x + 8 J 8x 2y = -4