Geometry 5.7 Notes: Using Congruent Triangles

Warm-up:

1. $\Delta F E A \cong \Delta C D B$

Circle:

SAS (ASA) SSS AAS NOT CONGRUENT

2. ∆__ ≅ ∆_

Circle:

SAS ASA SSS AAS NOT CONGRUENT

3. A__ = A___

Circle:

SAS ASA SSS

AAS NOT CONGRUENT

4. AWXY = AYXZ

Circle:

SAS ASA SSS AAS NOT CONGRUENT

5. DCBA = DADC

Circle:

SAS ASA SSS AAS NOT CONGRUENT

6. ∆__ ≅ ∆___

Circle:

SAS ASA SSS AS NOT CONGRUEN

CPCTC: Corresponding Parts of Congruent Triangles are Congruent

* CAN ONLY BE DONE AFTER
PROVING AS # !

Ok.... But what does that mean??

If two triangles are known to be congruent, then all corresponding angles/sides are also congruent. For example, if 2 triangles are congruent by SSS, then the angles of the 2 triangles are congruent.

1. Explain how you can use the given information to prove that the hang glider parts are congruent.

Given: $\angle 1 \cong \angle 2$, $\angle RTQ \cong \angle RTS$

Prove: $\overline{QT} \cong \overline{ST}$

**HINT: If you can show that $\triangle QRT \cong \triangle SRT$, then you know that $\overline{QT} \cong \overline{ST}$ since these sides are corresponding!

Statements	Reasons
$0 \angle 1 \cong \angle 2$ $\angle RTQ \cong \angle RTS$	OGIVEN
② RT ≅ RT	@REFL. PROP. =
3 LRQT = LRST	3 = SUPPS. THM (OR THIRD ANGLE THEOREM)
(F) A RQT = A RST	4) AAS =
⑤ QT ≅ ST	3 CPCTC

2. Write a two-column proof.

Given: the diagram Prove: $\angle A \cong \angle C$

100	4 14		
	100	63.884	ents
100		real III	
1020000000	4 5 5 1	THE R. P. LEWIS	WHAT CLEAN

1.	AD	~	CD
	AB	R.	CB

2. BD & BD

3. AABD = ACBD

4. LA = LC

3. Write a two-column proof.

1. GIVEN

2. REFL. PROP. =

3. SSS =

4. CPCTC

Prove: $\overline{GK} \cong \overline{HJ}$

Reasons

Statements

1. JN AKI ZTNH AKLG ZTHN AKGL

2. AJNH YAKLG

3. GK = HJ

1. GIVEN

2. AAS =

3. CPCTC

Period 6 ONLY:

**There are at least TWO different ways to write this proof: one with ≅ ∆s and CPCTC, one without. Challenge yourself! Try to write both proofs ©

Given: the diagram

Prove: ∠1 ≅ ∠2

Statements	Reasons	Statements	Reasons
1. LEAB & LEDC LABB & LDEC AB & CD	I.GIVEN		
2. DEAB & DEDC	2. AAS		
	3. CPCTC		
4. DEBC IS ISOSC. A	4. DEF 1805C. A		
	5. BASE LS THM.		