Hey

Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

IF LA = LD AND LB=LE, THEN LC=LF.

Examples:

1. Find $m \angle BDC$.

2. Find the values of x and y.

ALTERNATE INTERIOR

$$y = 180 - 105 - 43$$

$$= 32^{\circ}$$

From Chapter 4: Two figures are congruent if and only if a rigid motion or a composition of rigid motions maps each part of a figure onto the other.

- → A rigid motion maps each part of a figure to a corresponding part of its image.
- → Because rigid motions preserve length and angle measure, corresponding parts of congruent figures are congruent. This means that corresponding <u>SIDES</u> and corresponding <u>ANGLES</u> are <u>\(\)</u>

Using Rigid Motions to prove two figures are congruent

Now that we know the two triangles above are congruent, we can write a ______ CONGRUENCE STATEMENT___.

mple:

3. Write a congruence statement for the triangles. Identify all parts of congruent, corresponding parts.

- 4. In the diagram, $DEFG \cong SPQR$.
 - a. Find the value of x.

b. Find the value of y.

$$20 = 2F$$
 $69 = 60$
 $9 = 60$
 $9 = 10$

Showing That Figures are Congruent

Example:

5. You divide the wall into orange (left) and blue (right) sections along \overline{JK} . Will the sections of the wall be the same size and shape? Explain.

YES, THEY ARE SAMESIZE AND SHAPE SINCE ALL CORRESPONDING SIDES AND ANGLES ARE

Properties of Triangle Congruence

Reflexive: FOR ANY DABC, DABC = DABC

Symmetric: IF DABC = DDEF, THEN DDEF = DABC

Transitive: IF △ABC = △DEF AND △DEF = △GHI, THEN △ABC = △GHI