Lines in the Coordinate Plane

Lesson Objective

FIND AND USE SLOPES OF LINES TO DETERMINE IF LINES ARE // OR I; GRAPH LINES.

Algebra 1 Review

In Algebra 1, you learned how to find the slope of a line in the coordinate plane.

Slope: The slope of a line is a number that describes the ____ STEEPNESS ____ of the line.

→ ANY two points can be used to determine the slope of a line or line segment.

The RISE is the difference in the y-values

The RUN is the difference in the x-values

The SLOPE is the RATIO of the RISE to the RUN.

$$\frac{1}{m} = \frac{RISE}{RUN} = \frac{y_2 - y_1}{\chi_2 - \chi_1}$$

Examples:

1. Use the slope formula to determine the slope of \overline{GH} if G(2, 3) and H(7, 5).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{7 - 2} = \frac{2}{5}$$

Summary: Slope of a Line						
Positive Slope	Negative Slope	Zero Slope	Undefined Slope			
		m= 7.	**************************************			

More Algebra 1 Review

In Algebra 1, you learned how to graph lines in the coordinate plane using these formulas:

#1	Slope-Intercept Form	y=mx+b	m is the slope b is the y-intercept
#2	Point-Slope Form	$y-y_1=m(x-x_1)$	m is the slope (x,y) is a point on the line

(1) Graph the y-int (b)

(3) Make at least 3 points

(4) Connect the points with a straightedge

Graphing #2: Point-Slope Form

4.
$$y + 3 = (-2)(x - 1)$$

point (x₁, y₁)

(2) From this point, plot new points using the slope (m) "rise/run"

(3) Make at least 3 points.

(4) Connect the points with a straightedge

The equation of a vertical line is $\chi=h$ Vertical Lines where h is the X - intercept. Horizontal Lines

The equation of a vertical line is y = K where k is the y - intercept.

Example: y = -3

Example: $\chi = 5$

Connecting it to Geometry

Parallel Lines Theorem (|| Lines Thm)

In a coordinate plane, two distinct non-vertical lines are parallel if and only if they have the SAME slope.

Also, any two vertical lines are parallel.

(1 Lines Thm)

Perpendicular Lines Theorem In a coordinate plane, two distinct non-vertical lines are perpendicular if and only if the PRODUCT of their slopes is _____. *PRODUCT= Also, horizontal lines are perpendicular to vertical lines. MULTIPLY

Example:

"NEGATIVE RECIPROCALS" in 3 AND 3

6. Determine which of the lines are parallel and which of the lines are perpendicular.

$$m_{(a)} = \frac{3-2}{0-(-3)} = \frac{1}{3}$$

$$m(d) = \frac{2-0}{-3-(-2)} = \frac{2}{-1} = -2$$

