All about Perpendicular Lines

Pistance from a point to a line: this distance is the length of the _____ segment from the point to the line.

This ___ segment is also the _SHORTEST ___ distance between the point and the line.

Example:

- 1. Name the shortest distance from point A to \overline{BC} : \overline{AP}
- 2. Write and solve an inequality to solve for the values of x that are valid.

$$AC > AP$$
 $4 - 8 > 12$
 $+ 8 + 8$
 $- 20$

3. Find the distance from point A to \overrightarrow{BD} .

$$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$AC = \sqrt{(1 - (-3))^2 + (-1 - 3)^2}$$

$$AC = \sqrt{(4)^2 + (-4)^2}$$

$$AC = \sqrt{16 + 16}$$

$$AC = \sqrt{32}$$

$$AC = 4\sqrt{2}$$

Linear Pair Perpendicular Theorem: If two lines intersect to form a linear pair of $\stackrel{\succeq}{=}$ angles, then the lines are perpendicular. (Lin. Pair \bot Thm)

Perpendicular Transversal Theorem: In a PLANE, if a transversal is _____ to one of the two parallel lines, then it is to the other line. (1 Transv. Thm)

Examples:

1. Determine if there is enough information given in the diagram to prove each statement.

a. $\angle 1 \cong \angle 2$ b. $\angle 1 \cong \angle 3$

2. Solve to find x and y in the diagram.

$$5x+4y=90$$

 $5x+4(15)=90$
 $5x+60=90$
 $5x=30$
 $x=6$