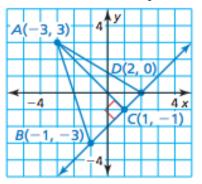

Name	Date	Period		
All about Perpendicular Lines				

Distance from a point to a line: this distance is the length of the _____ segment from the point to the line.

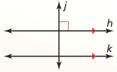
 \rightarrow This ______ segment is also the ______ distance between the point and the line.



Example:

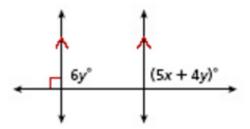
- 1. Name the shortest distance from point A to \overline{BC} :
- 2. Write and solve an inequality to solve for the values of x that are valid.

3. Find the distance from point A to \overrightarrow{BD} .



Perpendicular Line Theorems (*** to abbreviate "transversal," we will use _____.***)

Linear Pair Perpendicular Theorem: If two lines intersect to form a linear pair of _____ angles, then the lines are perpendicular. (Lin. Pair \perp Thm)


Perpendicular Transversal Theorem: In a _____, if a transversal is _____ to one of the two parallel lines, then it is _____ to the other line. (\perp Transv. Thm)

Lines Perpendicular to a Transversal Theorem : In a the two lines are to each other. (Line \perp to Transv. Thm)	, is two lines are	to the	line, then
 Examples: 1. Determine if there is enough information given in the diagonal a. ∠1 ≅ ∠2 b. ∠1 ≅ ∠3 	ram to prove each state	ment.	3 4

c. $a \perp d$ d. $b \parallel c$

2. Solve to find *x* and *y* in the diagram.

