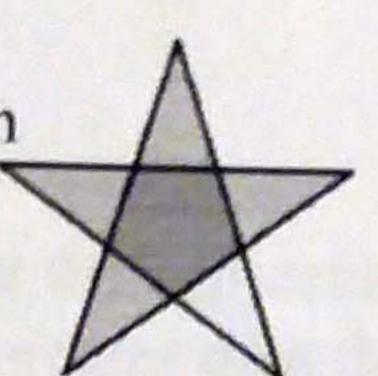
Name	KEY	

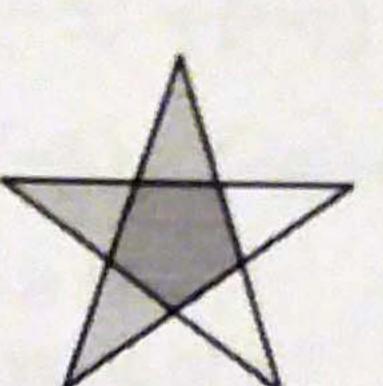
Date

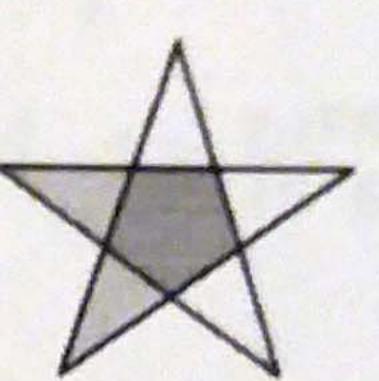
Period

Inductive Reasoning // Counterexamples

Lesson Objective

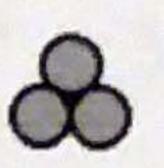

MAKE AND TEST CONJECTURES USING INDUCTIVE REASONING; FIND COUNTEREXAMPLES TO PROVE STATEMENTS FALSE.

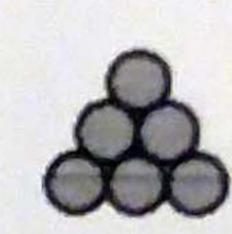

Conjecture: A conjecture is an unproven statement based on observations.

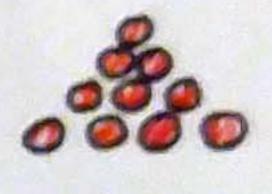

Inductive Reasoning: when you find a PATTERN in specific cases and then write a conjecture for the general case.

Example:

1. Sketch the next figure in the pattern







2. Sketch the next figure in the pattern

Making and Testing a Conjecture Example:

3. Numbers such as 3, 4, and 5 are called <u>CONSECUTIVE INTEGERS</u>. Make a test a conjecture about the sum of any three consecutive integers.

CONTECTURE:

SUM OF THREE CONSECUTIVE INTEGERS EQUALS 3 TIMES THE MIDDLE NUMBER

TEST:

 $199 + 200 + 201 \stackrel{?}{=} 200.3$ 600 = 600

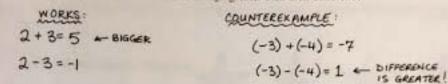
X

Make and test a conjecture about the product of two odd integers.

SKIP

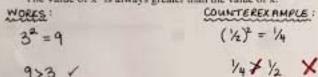
Counterexamples

To show a conjecture is true, you must show that it is true for ALL cases.

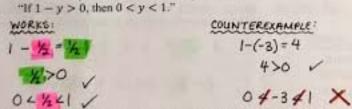

You can show it is false, however, by finding just ONE COUNTEREX AMPLE

A counterexample is a specific case for which the conjecture is false.

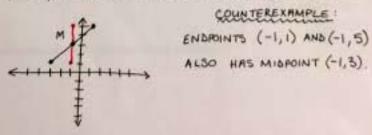
Example:


A student makes the following conjecture about the sum of two numbers. Find a counterexample to disprove the student's conjecture.

"The sum of two numbers is always greater than their difference."



6. Find a counterexample to show that the conjecture is false.


"The value of x2 is always greater than the value of x."

7. Find a counterexample to show that the conjecture is false.

Determine if each biconditional is true. If false, provide a counterexample.
"A segment has endpoints at (1, 5) and (-3, 1) if and only if its midpoint is at (-1, 3)."

