| Name | | | | |------|--|--|--| |------|--|--|--| **Measuring Angles** lesson Objective IWBAT find measures of and INBAT find measures classify different types of angles. ## **Naming Angles** Angle: An angle is a set of points consisting of 2 diff. rays that have the same endpoint called the <u>yevtex</u>. The <u>rays</u> are the <u>Sicus</u> of the angle. Mame: Duse vertex (LA) 2 use points on (LCAB or LBAC) 3 use # inside the (L1) Period & ***If more than one angle has the save vertex, the name $\angle(vertex\ point)$ cannot be used!!! Example: 1. A lighthouse keeper measures the angles formed by the lighthouse at point M and 3 boats. Name 3 angles in the diagram. ## **Measuring Angles** <u>Protractor Postulate</u>: The measure of $\angle AOB$ (\underline{MLAOB}) is equal to the difference between the real numbers matched with \overrightarrow{OA} and \overrightarrow{OB} . Classifying Angles | Acute Angle | Right Angle | Obtuse Angle | Straight Angle | |---|-------------|--------------------|----------------| | A | A | A | A | | 0° <angle 90°<="" <="" td=""><td>=90°</td><td>90° < angle < 180°</td><td>=180°</td></angle> | =90° | 90° < angle < 180° | =180° | a. ∠GHK b. ∠*JHL* c. ∠LHK ## **Identifying Congruent Angles** Congruent Angles: Two angles are congruent when they have the Same degree measure MEASURES of angles are EQUAL A wse arcs to show B LAZLB **Angle Addition Postulate** | Words | Symbols | _ | |--|--|---| | | If P is in the <u>inside</u> of $\angle RST$, then | 1 | | If P is in the <u>inside</u> of $\angle RST$, then the measure of $\angle RST$ is equal to the <u>sum</u> of the measures of and $\angle PST$. | merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
merso
me | | Example: 3. Find $m \angle ABC$. MLABC = $m \angle ABD + m \angle DBC^{4}$. $m \angle RST = 114^{\circ}$. Find $m \angle RSV$. A 1 D 21° MLABC = MLABD+MLD MLABC = 37°+21° = 58° MLRST = MLRSV + MLVST 114 = mLRSU + 72 42° = mLRSU 5. L is in the interior of $\angle JKM$. Find $m\angle LKM$ if $m\angle JKL = 56.4^{\circ}$ and $m\angle JKM = 82.5^{\circ}$. Sketch a diagram first. MLJKM= MLJKL + MLLKM 82.5°= 56.4° + MLLKM -56.4 -56.4 [26.1°= MLLKM]