Using the Midpoint Formula

The Midpoint Formula: The coordinates of the midpoint of a segment are the AVERAGE of the x-coordinates and the AVERAGE of the y-coordinates of the endpoints.

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$\left(x_m, y_m\right)$$

Examples:

5. The endpoints of \overline{RS} are shown in the diagram. Find the coordinates of the midpoint M.

6. The midpoint of \overline{JK} and endpoint J are given. Find the coordinates of the other endpoint, K.

The Distance Formula: If $A(\chi_1, \chi_1)$ and $B(\chi_2, \chi_2)$ are points in the coordinate plane, then the distance between A and B is:

$$c^{2} = a^{2} + b^{2}$$

$$c = \sqrt{(\alpha^{2} + b^{2})^{2}}$$

$$c = \sqrt{(\chi_{2} - \chi_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Example: 7. Find the distance between R(2, 3) and S(4, -1). Make a sketch on the coordinate plane provided.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(4 - 2)^2 + ((-1) - 3)^2}$$

$$d = \sqrt{(2)^2 + (-4)^2}$$

$$d = \sqrt{4 + 16}$$

$$d = \sqrt{30}$$

$$d = \sqrt{50}$$

EXAMPLE 2:

FIND THE PERIMETER OF DABC WITH VERTICES

$$A(-2,3)$$
, $B(3,-3)$, $C(-2,-3)$

$$AC = Vert.line \Rightarrow = |3-(-3)| = 6$$

 $y-coords = |3-(-3)| = 6$

BC = horz. line
$$\Rightarrow = |-2-3| = 65$$

 x -coords

AB =
$$\sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(3-(-2))^2 + (-3-3)^2}$

$$= \sqrt{5^2 + (-6)^2}$$

$$= \sqrt{25 + 36}$$